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Preface to third edition

Analysis of variance and regression has for many years been the mainstay of
statistical modelling. These techniques usually have as a basic assumption
that the residual or error terms are independently and identically distributed.
Mixed models are an important approach to modelling, which allows us to relax
the independence assumption and take into account more complicated data
structures in a fexible way. Sometimes, this interdependence of observations
is modelled directly in a mixed model. For example, if a number of repeated
measurements are made on a patient, then mixed models allow us to specify
a pattern for the correlation between these measurements. In other contexts,
such as the cross-over clinical trial, specifying that patient effects are normally
distributed, rather than fxed as in the classical approach, induces observations
on the same patient to be correlated.
There are many benefts to be gained from using mixed models. In some

situations, the beneft will be an increase in the precision of our estimates. In
others, we will be able to make wider inferences. We will sometimes be able to use
a more appropriate model that will give us greater insight into what underpins
the structure of the data. However, it is only the availability of software in versatile
packages such as SAS® that has made these techniques widely accessible. It is
now important that suitable information on their use becomes available so that
they may be applied confdently on a routine basis.
Our intention in this book is to put all types of mixed models into a general

framework and to consider the practical implications of their use. We aim to
do this at a level that can be understood by applied statisticians and numerate
scientists. Greatest emphasis is placed on skills required for the application of
mixed models and interpretation of the results. An in-depth understanding of
the mathematical theory underlying mixed models is not essential to gain these,
but an awareness of the practical consequences of ftting different types of mixed
models is necessary. While many publications are available on various aspects of
mixed models, these generally relate to specifc types of model and often differ in
their use of terminology. Such publications are not always readily comprehensible

xiii
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xiv Preface to third edition

to the applied statisticians whowill be the most frequent users of the methods. An
objective of this book is to help overcome this defcit.
Examples given will primarily relate to the medical feld. However, the general

concepts of mixed models apply equally to many other areas of application, for
example, social sciences, agriculture, veterinary science and offcial statistics. (In
the social sciences,mixedmodels are often referred toas ‘multi-level’models.)Data
are becoming easier to collect, with the consequence that datasets are now often
large and complex.Webelieve thatmixedmodels provideuseful tools formodelling
the complex structures that occur in such data.
The third edition of this book retains the structure of the frst two, but there

are further changes to refect the continued evolution of SAS. This edition fully
incorporates features of SAS up to version 9.3. Compared to what was available
at the time of the previous edition, enhancements to SAS include improved
graphical facilities. Importantly, there is also a new procedure, PROC MCMC,
which facilitates Bayesian analysis. This has led to extensive changes in our
coverage of Bayesian methods. SAS 9.3 and later versions now provide output
both in text format from the output window and, additionally, as an HTML fle in
the results viewer. There have been accompanyingminor changes in the details of
outputs and graphs, such as labelling. Our approach to reporting SAS outputs in
this edition has been to change our presentation from earlier editions only when
we wish to highlight features that have changed substantially and, importantly,
to facilitate the reader’s use of mixed models, whatever their version of SAS.
During the drafting of this edition, SAS 9.4 became available. It is not fully

incorporated into this book because its new features are focused more on the
SAS high performance procedures than on improvements to the SAS/STAT
procedures. These high performance procedures ‘provide predictive modelling
tools that have been specially developed to take advantage of parallel processing
in both multithread single-machine mode and distributed multi-machine mode’.
Typically, the high performance procedures such as PROC HPLMIXED have a
greatly reduced range of options compared to PROC MIXED and, consequently,
are peripheral to the aims of this book. We do, however, consider some of the
small modifcations to improve procedures such as GLIMMIX and MCMC that are
available in SAS/STAT® 12.1 and later versions.
Chapter 1 provides an introduction to the capabilities of mixed models,

defnes general concepts and gives their basic statistical properties. Chapter 2
defnes models and ftting methods for normally distributed data. Chapter 3
frst introduces generalised linear models that can be used for the analysis of
data that are binomial or Poisson or from any other member of the exponential
family of distributions. These methods are then extended to incorporate mixed
models concepts under the heading of generalised linear mixed models. The
fourth chapter examines how mixed models can be applied when the variable
to be analysed is categorical. The main emphasis in these chapters, and indeed
in the whole book, is on classical statistical approaches to inference, based on
signifcance tests and confdence intervals. However, the Bayesian approach is
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also introduced in Chapter 2, since it has several potential advantages and its use
is becoming more widespread. Although the overall emphasis of the book is on
the application of mixed models techniques, these chapters can also be used as a
reference guide to the underlying theory of mixed models.
Chapters 5–7 consider the practical implications of using mixed models for

particular designs. Each design illustrates a different feature of mixed models.
Multi-centre trials and meta-analyses are considered in Chapter 5. These are

examples of hierarchical data structures, and the use of a mixed model allows for
any additional variation in treatment effects occurring between centres (or trials)
and hence makes results more generalisable. The methods shown can be applied
equally to any type of hierarchical data.
In Chapter 6, the uses of covariance pattern models and random coeffcients

models are described using the repeated measures design. These approaches take
into account the correlated nature of the repeated observations and give more
appropriate treatment effect estimates and standard errors. The material in this
chapter will apply equally to any situation where repeated observations are made
on the same units.
Chapter 7 considers cross-over designs where each patient may receive several

treatments. In this design, more accurate treatment estimates are often achieved
by ftting patient effects as random. This improvement in effciency can occur for
any dataset where a fxed effect is ‘crossed’ with a random effect.
In Chapter 8, a variety of other designs and data structures is considered. These

either incorporate several of the design aspects covered in Chapters 5–7 or have
structures that have arisen in a more unplanned manner. They help to illustrate
the broad scope of application of mixed models. This chapter includes two new
sections. We have added a section on the analysis of bilateral data, a common
structure in some areas of medical research, but one that we had not previously
addressed. There is also a substantial new section on incomplete block designs.
Chapter 9 gives information on software available for ftting mixed models.

Most of the analyses in the book are carried out using PROC MIXED in SAS,
supplemented by PROC GENMOD, PROC GLIMMIX, and PROC MCMC. This
chapter introduces the basic syntax for these procedures. This information
should be suffcient for ftting most of the analyses described, but the full SAS
documentation should be referenced for those who wish to use more complex
features. The SAS code used for most of the examples is supplied within the text.
In addition, the example datasets and SAS code may be obtained electronically
from www.wiley.com/go/brown/applied_mixed.
This book has been written to provide the reader with a thorough understand-

ing of the concepts of mixedmodels, andwe trust it will servewell for this purpose.
However, readers wishing to take a shortcut to the ftting of normal mixed models
should read Chapter 1 for an introduction, Section 2.4 for practical details, and
the chapter relevant to their design. To ft non-normal or categorical mixed
models, Section 3.3 or Section 4.4 should be read in addition to Section 2.4. In
an attempt to make this book easier to use, we have presented at the beginning of

http://www.wiley.com/go/brown/applied_mixed
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the text a summary of the notation we have used, while at the end, we list some
key defnitions in a glossary.
Our writing of this book has been aided in many ways. The frst edition evolved

from a constantly changing set of course notes that accompanied a 3-day course
on the subject, run regularly over the previous 6 years. The second edition was
helped by many individuals who were kind enough to comment on the frst
edition, including the identifcation of some errors that had slipped in, and by
further participants at our courses who have contributed to discussions and
have thereby helped to shape our views. This process has continued with the
third edition. We are also grateful to many other colleagues who have read and
commented on various sections of themanuscript and especially to our colleagues
who have allowed us to use their data.We hope that readers will fnd the resulting
book a useful reference in an interesting and expanding area of statistics.

Helen Brown
Robin Prescott

Edinburgh
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Mixed models notation

The notation below is provided for quick reference. Models are defned more fully
in Sections 2.1, 3.1 and 4.1.

Normal mixed model

y = X� + Z� + e,

� ∼ N(0,G),

var(e) = R,

var(y) = V = ZGZ′ + R.

Generalised linear mixed model

y = � + e,

g(�) = X� + Z�,

� ∼ N(0,G),

var(e) = R,

var(y) = V = var(�) + R,

≈ BZGZ′B + R (a frst-order approximation),

where
y= dependent variable,
e= residual error,
X= design matrix for fxed effects,
Z= design matrix for random effects,
�= fxed effects parameters,
�= random effects parameters,
R= residual variance matrix,
G=matrix of covariance parameters,
V= var(y) variance matrix,

xvii
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xviii Mixed models notation

�= expected values,
g= link function,

B= diagonal matrix of variance terms (e.g. B=
diag{�i(1 − �i)} for binary data).

Ordered categorical mixed model

y = � + e,

logit(�[c]) = X� + Z�,

� ∼ N(0,G),

var(y) is defned as in the GLMM,

where
�= (�11, �12, �13, �21, �22, �23, … , �n1, �n2, �n3)′,
�ij = probability observation i is in category j,
�[c] = (�[c]

11, �
[c]
12, �

[c]
13, �

[c]
21, �

[c]
22, �

[c]
23, … , �

[c]
n1, �

[c]
n2, �

[c]
n3)

′
,

�
[c]
ij = probability (yi ≤ j) =

∑j

k=1
�ik.



Brown778258 fast.tex V3 - 11/14/2014 10:24 A.M. Page xix

About the Companion
Website

This book is accompanied by a companion website:

www.wiley.com/go/brown/applied_mixed

This website includes SAS codes and datasets for most of the examples. In the
future, updates and further materials may be added.

xix
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1

Introduction

At the start of each chapter, we will ‘set the scene’ by outlining its content. In
this introductory chapter, we start Section 1.1 by describing some situations
where a mixed models analysis will be particularly helpful. In Section 1.2, we
describe a simplifed example and use it to illustrate the idea of a statistical model.
We then introduce and compare fxed effects and random effects models. In the
next section, we consider a more complex ‘real-life’ multi-centre trial and look
at some of the variety of models that could be ftted (Section 1.3). This example
will be used for several illustrative examples throughout the book. In Section 1.4,
the use of mixed models to analyse a series of observations (repeated measures)
is considered. Section 1.5 broadens the discussion on mixed models and looks
at mixed models with a historical perspective of their use. In Section 1.6, we
introduce some technical concepts: containment, balance and error strata.
Wewill assume in our presentation that the reader is already familiar with some

of the basic statistical concepts as found in elementary statistical textbooks.

1.1 The use of mixed models

In the course of this book, we will encounter many situations in which a mixed
models approach has advantages over the conventional type of analysis, which
would be accessible via introductory texts on statistical analysis. Some of them
are introduced in outline in this chapter and will be dealt in detail later on.

Example 1: Utilisation of incomplete information in a cross-over trial Cross-over
trials are often utilised to assess treatment effcacy in chronic conditions, such as
asthma. In such conditions, an individual patient can be tested for response to
a succession of two or more treatments, giving the beneft of a ‘within-patient’
comparison. In the most commonly used cross-over design, just two treatments

Applied Mixed Models in Medicine, Third Edition. Helen Brown and Robin Prescott.
© 2015 JohnWiley & Sons, Ltd. Published 2015 by JohnWiley & Sons, Ltd.
CompanionWebsite: www.wiley.com/go/brown/applied_mixed
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2 Introduction

are compared. If, for generality, we call these treatments A and B, then patients
will be assessed either on their response to treatment A, followed by their response
to treatment B, or vice versa. If all patients complete the trial, and both treatments
are assessed, then the analysis is fairly straightforward. However, commonly,
patients drop out during the trial and may have a valid observation from only
the frst treatment period. These incomplete observations cannot be utilised in
a conventional analysis. In contrast, the use of a mixed model will allow all of
the observations to be analysed, resulting in more accurate comparisons of the
effcacy of treatment. This beneft, of more effcient use of the data, applies to all
types of cross-over trial where there are missing data.

Example 2: Cross-over trials with fewer treatment periods than treatments In cross-
over trials, for logistical reasons, it may be impractical to ask a patient to evaluate
more than two treatments (e.g. if the treatment has to be given for several weeks).
Nevertheless, there may be the need to evaluate three or more treatments. Special
types of cross-over design can be used in this situation, but a simple analysis will
be very ineffcient. Mixed models provide a straightforward method of analysis,
which fully uses the data, resulting again in more precise estimates of the effect of
the treatments.

Example 3: A surgical audit A surgical audit is to be carried out to investigate how
different hospitals compare in their rates of postoperative complications following
a particular operation. As some hospitals carry out the operation commonly,
while other hospitals perform the operation rarely, the accuracy with which the
complication rates are estimated will vary considerably from hospital to hospital.
Consequently, if the hospitals are ordered according to their complication rates,
some may appear to be outliers compared with other hospitals, purely due to
chance variation. When mixed models are used to analyse data of this type,
the estimates of the complication rates are adjusted to allow for the number of
operations, and rates based on small numbers become less extreme.

Example 4: Analysis of a multi-centre trial Many clinical trials are organised on
a multi-centre basis, usually because there is an inadequate number of suitable
patients in any single centre. The analysis of multi-centre trials often ignores
the centres from which the data were obtained, making the implicit assumption
that all centres are identical to one another. This assumption may sometimes
be dangerously misleading. For example, a multi-centre trial comparing two
surgical treatments for a condition could be expected to show major differences
between centres. There could be two types of differences. First, the centres may
differ in the overall success, averaged over the two surgical treatments. More
importantly, there may be substantial differences in the relative beneft of the two
treatments across different centres. Surgeons who have had more experience
with one operation (A) may produce better outcomes with A, while surgeons
with more experience with the alternative operation (B) may obtain better results
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with B.Mixedmodels can provide an insightful analysis of such a trial by allowing
for the extent to which treatment effects differ from centre to centre. Even when
the difference between treatments can be assumed to be identical in all centres,
a mixed model can improve the precision of the treatment estimates by taking
appropriate account of the centres in the analysis.

Example 5: Repeated measurements over time In a clinical trial, the response to
treatment is often assessed as a series of observations over time. For example, in a
trial to assess the effect of a drug in reducing blood pressure, measurementsmight
be taken at two, four, six and eightweeks after starting treatment. The analysiswill
usually be complicated by a number of patients failing to appear for some assess-
ments or withdrawing from the study before it is complete. This complication can
cause considerable diffculty in a conventional analysis. A mixed models analysis
of such a study does not require complete data from all subjects. This results in
more appropriate estimates of the effect of treatment and their standard errors
(SEs). The mixed model also gives great fexibility in analysis, in that it can allow
for awide variety of ways inwhich the successive observations are correlatedwith
one another.

1.2 Introductory example

We consider a very simple cross-over trial using artifcial data. In this trial, each
patient receives each of treatments A and B for a fxed period. At the end of each
treatment period, ameasurement is taken to assess the response to that treatment.
In the analysis of such a trial, we commonly refer to treatments being crossedwith
patients, meaning that the categories of ‘treatments’ occur in combination with
those of ‘patients’. For the purpose of this illustration, we will suppose that the
response to each treatment is unaffected by whether it is received in the frst or
second period. The table shows the results from the six patients in this trial.

Treatment

Patient A B
Difference

A− B Patient mean

1 20 12 8 16.0
2 26 24 2 25.0
3 16 17 −1 16.5
4 29 21 8 25.0
5 22 21 1 21.5
6 24 17 7 20.5
Mean 22.83 18.67 4.17 20.75
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1.2.1 Simple model to assess the effects of treatment (Model A)

We introduce in this section a very simple example of a statistical model using this
data. Amodel can be thought of as an attempt to describe quantitatively the effect
of a number of factors on each observation. Any model we describe is likely to
be a gross oversimplifcation of reality. In developing models, we are seeking ones
which are as simple as possible but which contain enough truth to ask questions
of interest. In this frst simple model, we will deliberately be oversimplistic in order
to introduce our notation. We just describe the effect of the two treatments. The
model may be expressed as

yij = � + tj + eij,

where
j= A or B,

yij = observation for treatment j on the ith patient,
�= overall mean,
tj = effect of treatment j,
eij = error for treatment j on the ith patient.

The constant � represents the overall mean of the observations. �+ tA
corresponds to the mean in the treatment group A, while �+ tB corresponds
to the mean in the treatment group B. The constants �, tA and tB can thus be
estimated from the data. In our example, we can estimate the value of � to
be 20.75, the overall mean value. From the mean value in the frst treatment
group, we can estimate �+ tA as 22.83, and hence our estimate of tA is
22.83−20.75=2.08. Similarly, from the mean of the second treatment group,
we estimate tB as −2.08. The term tj can therefore be thought of as a measure of
the relative effect that treatment j has had on our outcome variable.
The error term, eij, or residual is what remains for each patient in each period

when�+ tj is deducted from their observedmeasurement. This represents random
variation about the mean value for each treatment. As such, the residuals can
be regarded as the result of drawing random samples from a distribution. We will
assume that the distribution is Gaussian or normal, with standard deviation �,
and that the samples drawn from the distribution are independent of each other.
The mean of the distribution can be taken as zero, since any other value would
simply cause a corresponding change in the value of �. Thus, wewill write this as

eij ∼ N(0, �2),

where �2 is the variance of the residuals. In practice, checks should be made to
determine whether this assumption of normally distributed residuals is reason-
able. Suitable checkingmethods will be considered in Section 2.4.6. As individual
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observations are modelled as the sum of �+ tj, which are both constants, and the
residual term, it follows that the variance of individual observations equals the
residual variance:

var(yij) = �
2
.

The covariance of any two separate observations yij and yi′j′ can be written as

cov(yij, yi′ j′ ) = cov(� + ti + eij, � + ti′ + ei′ j′ )

= cov(eij, ei′j′ ) (since other terms are constants).

Since all the residuals are assumed independent (i.e. uncorrelated), it follows that

cov(yij, yi′j′ ) = 0.

The residual variance, �2, can be estimated using a standard technique known as
analysis of variance (ANOVA). The essence of themethod is that the total variation
in the data is decomposed into components that are associated with possible
causes of this variation, for example, that one treatment may be associated with
higher observations, with the other being associated with lower observations. For
this frst model, using this technique, we obtain the following ANOVA table:

Source of
variation

Degrees of
freedom

Sums of
squares

Mean
square F p

Treatments 1 52.08 52.08 2.68 0.13
Residual 10 194.17 19.42

Note: F= value for the F test (ratio of mean square for treatments to
mean square for residual).

p= signifcance level corresponding to the F test.

The residual mean square of 19.42 is our estimate of the residual variance, �2,
for this model. The key question often arising from this type of study is as follows:
‘do the treatment effects differ signifcantly from each other?’ This can be assessed
by the F test, which assesses the null hypothesis of no mean difference between
the treatments (the larger the treatment difference, the larger the treatment
mean square and the higher the value of F). The p value of 0.13 is greater than
the conventionally used cutoff point for statistical signifcance of 0.05. Therefore,
we cannot conclude that the treatment effects are signifcantly different. The
difference between the treatment effects and the SE of this difference provides a
measure of the size of the treatment difference and the accuracy with which it is
estimated:

difference = tA − tB = 2.08 + 2.08 = 4.16.
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The SE of the difference is given by the formula

SE(tA − tB) =
√

�2(1∕nA + 1∕nB)

=
√
(2 × �2∕6) =

√
6.47 = 2.54.

Note that a t test can also be constructed from this difference and SE, giving
t=4.16/2.54=1.63. This is the square root of our F statistic of 2.68 and gives
an identical t test p value of 0.13.

1.2.2 Amodel taking patient effects into account (Model B)

Model A as discussed previously did not utilise the fact that pairs of observations
were taken on the same patients. It is possible, and indeed likely, that some patients
will tend to have systematically higher measurements than others, and we may
be able to improve the model by making allowance for this. This can be done by
additionally including patient effects into the model:

yij = � + pi + tj + eij,

where pi are constants representing the ith patient effect.
The ANOVA table arising from this model is as follows:

Source of
variation

Degrees of
freedom

Sums of
squares

Mean
square F p

Patients 5 154.75 30.95 3.93 0.08
Treatments 1 52.08 52.08 6.61 0.05
Residual 5 39.42 7.88

The estimate of the residual variance, �2, is now 7.88. It is lower than in Model
A because it represents the ‘within-patient’ variation, as we have taken account
of patient effects. The F test p value of 0.05 indicates that the treatment effects
are now signifcantly different. The difference between the treatment effects is the
same as in Model A, 4.16, but its SE is now as follows:

SE(tA − tB) =
√
(2 × �2∕6) =

√
2.63 = 1.62.

(Note that the SE of the treatment difference could alternatively have been
obtained directly from the differences in patient observations.)
Model B is perhaps the ‘obvious’ one to think of for this dataset. However, even

in this simple case, by comparison with Model A we can see that the statistical
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modeller has some fexibility in his/her choice ofmodel. Inmost situations, there is
no single ‘correct’ model, and, in fact, models are rarely completely adequate. The
job of the statistical modeller is to choose that model which most closely achieves
the objectives of the study.

1.2.3 Random effects model (Model C)

In theModels A and B, the only assumptionwemade about variationwas that the
residuals were normally distributed. We did not assume that patient or treatment
effects arose from a distribution. They were assumed to take constant values.
These models can be described as fxed effects models, and all effects ftted within
them are fxed effects.
An alternative approach available to us is to assume that some of the terms

in the model, instead of taking constant values, are realisations of values from
a probability distribution. If we assumed that patient effects also arose from
independent samples from a normal distribution, then the model could be
expressed as

yij = � + pi + tj + eij,

eij ∼ N(0, �2)

pi ∼ N(0, �2
p ).

The pi are now referred to as random effects. Suchmodels, which contain amixture
of fxed and random effects, provide an example of amixed model. In this book, we
will meet several different types ofmixedmodel, andwe describe in Section 1.5 the
common feature that distinguishes them from fxed effects models. To distinguish
the class of models we have just met from those we will meet later, we will refer to
this type of model as a random effects model.
Each random effect in the model gives rise to a variance component. This is a

model parameter that quantifes random variation due to that effect only. In
this model, the patient variance component is �2p . We can describe variation at
this level (between patients) as occurring within the patient error stratum (see
Section 1.6 for a full description of the error stratum). This random variation
occurs in addition to the residual variation (the residual variance can also be
defned as a variance component.)
Defning themodel in thisway causes somedifferences in its statistical properties

compared with the fxed effects model met earlier.
The variance of individual observations in a random effects model is the sum of

all the variance components. Thus,

var(yij) = �
2
p + �

2
.
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This contrasts with the fxed effects models where we had

var(yij) = �
2
.

The effect on the covariance of pairs of observations in the random effects model
is interesting and perhaps surprising. Since yij =�+ pi + tj + eij, we can write

cov(yij, yi′ j′ ) = cov(� + pi + tj + eij, � + pi′ + tj′ + ei′j′ )

= cov(pi + eij, pi′ + ei′j′ ).

When observations from different patients are being considered (i.e. i≠ i′),
because of the independence of the observations, cov(yij, yi′j′ ) = 0. However,
when two samples from the same patient are considered (i.e. i= i′), then

cov(yij, yi′j′ ) = cov(pi + eij, pi + eij′ )

= cov(pi, pi) = �
2
p .

Thus, observations on the same patient are correlated and have covariance equal
to the patient variance component, while observations on different patients are
uncorrelated. This contrasts with the fxed effects models where the covariance of
any pair of observations is zero.
The ANOVA table for the random effects model is identical to that for the fxed

effects model. However, we can now use it to calculate the patient variance
component using results from the statistical theory that underpins the ANOVA
method. The theory shows the expected values for each of the mean square
terms in the ANOVA table, in terms of �2, �2

p and the treatment effects. These
are tabulated in the following table. We can now equate the expected value for
the mean squares expressed in terms of the variance components to the observed
values of the mean squares to obtain estimates of �2 and �2

p .

Source of
variation

Degrees of
freedom

Sums of
squares

Mean
square E(MS)

Patients 5 154.75 30.95 2�2
p + �

2

Treatments 1 52.08 52.08 �
2 + 6Σt2i

Residual 5 39.42 7.88 �
2

Note: E(MS)= expected mean square.

Thus, from the residual line in the ANOVA table, �̂2 = 7.88. In addition, by sub-
tracting the third line of the table from the frst we have:

2�̂2
p = (30.95 − 7.88), and �̂

2
p = 11.54.

(We are introducing the notation �̂
2
p to denote that this is an estimate of the

unknown �
2
p , and �̂

2 is an estimate of �2.)
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In this example, we obtain identical treatment effect results to those for the
fxed effects model (Model B). This occurs because we are, in effect, only using
within-patient information to estimate the treatment effect (since all information
on treatment occurs in the within-patient residual error stratum). Again, we
obtain the treatment difference as −4.16 with a SE of 1.62. Thus, in this case,
it makes no difference at all to our conclusions about treatments whether we ft
patient effects as fxed or random. However, had any of the values in the dataset
been missing, this would not have been the case. We now consider this situation.

Dataset with missing values

We will now consider analysing the dataset with two of the observations set to
missing.

Treatment

Patient A B
Difference

A− B Patient mean

1 20 12 8 16.0
2 26 24 2 25.0
3 16 17 −1 16.5
4 29 21 8 25.0
5 22 – – 22.0
6 – 17 – 17.0
Mean 4.25

As shown previously, there are two ways we can analyse the data. We can base
our analysis on a model where the patient effects are regarded as fxed (Model B)
or can regard patient effects as random (Model C).

The fxed effects model For this analysis, we apply ANOVA in the standard
way, and the result of that analysis is summarised as follows:

Source of
variation

Degrees of
freedom

Sums of
squares

Mean
square F p

Patients 5 167.90 33.58 3.32 0.18
Treatments 1 36.13 36.13 3.57 0.16
Residual 3 30.38 10.12

In the ftting of Model B, it is interesting to look at the contribution that the data
from patient 5 are making to the analysis. The value of 22 gives us information
that will allow us to estimate the level in that patient, but it tells us nothing at all




